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SUMMARY 
A standard Galerkin finite element penalty function method is used to approximate the solution of the three- 
dimensional Navier-Stokes equations for steady incompressible Newtonian entrance flow in a 90" curved 
tube (curvature ratio 6 = 1/6) for a triple of Dean numbers (K = 41,122 and 204). The computational results for 
the intermediate Dean number (K = 122) are compared with the results of laser-Doppler velocity measure- 
ments in an equivalent experimental model. For both the axial and secondary velocity components, fair 
agreement between the computational and experimental results is found. 

KEY WORDS Curved pipe flow Entrance flow Finite element method Penalty function method 
Experimental validation 

1. INTRODUCTION 

The steady entrance flow in a curved tube has been analysed as a first step towards fully three- 
dimensional analyses of the flow in arterial bifurcation models. The curved tube geometry has 
been choosen for two main reasons. First, the flow in bifurcations shows properties resembling the 
entrance flow in a curved tube.'-3 Secondly, the computations of the flow in a curved tube form a 
non-trivial way to evaluate the numerical method for three-dimensional flow including non- 
negligible secondary flow components. 

If the Navier-Stokes equations are rewritten in an orthogonal curvilinear toroidal co-ordinate 
system (see Figure l), two important dimensionless parameters are found:4 the curvature ratio 

6 = a /R  (1) 

and the Dean number 

~ c =  ReJ6, (2) 

with a the radius of the tube, R the curvature radius and Re the Reynolds number based on the 
diameter of the tube and the mean axial velocity; Re = WD/v, with Wthe mean axial velocity and v 
the kinematic viscosity. The Dean number can be interpreted as the ratio of the square root of the 
product of the convective inertial forces and centrifugal forces to the viscous forces, i.e. 

In this study a curvature ratio 6 =  116 has been chosen corresponding to the geometry of the 
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Figure 1. Toroidal co-ordinate system (r,  4,O) 

human carotid artery bif~rcation.~ With Reynolds numbers in the physiological range 
100 < Re < 800, this leads to Dean numbers in the range 40 < K < 330. 

Experimental analyses in the ranges of 6 and K considered, using a uniform inlet flow profile, 
were made by Olson,l Agrawal et a1.,6 Choi et al.' and Olson and Snyder.', ' In the case of a 
uniform inlet flow, immediately downstream of the entry in the bend a secondary flow is set up, 
which is dominated by the build-up of an axial boundary layer. Further downstream, two helical 
vortices develop as a result of the interaction between convective, centrifugal and viscous forces. 
Considering laminar flow, a fully developed parabolic velocity profile is a more convenient inlet 
flow for several reasons. In contrast with a uniform inlet flow, fully developed inlet flow can be 
achieved more easily in an experimental set-up and is well defined. The importance of a well 
defined inlet flow is underlined by the observations made by Olson and Snyder,' who found a far- 
downstream influence of the inlet condition. Furthermore, a fully developed inlet flow is more 
convenient for numerical analyses, since leading edge singularities are avoided. As far as is known, 
the development from a parabolic entry velocity profile has only been reported by Olson,' who 
presented the development of the axial velocity profiles in the plane of symmetry of the bend 
(1116 < 6 < 114.66 and 45 -= K < 756), by Bovendeerd et al.," who presented both axial and 
secondary velocity distributions at several cross-sections (6 = 1/6 and K = 286), and finally by 
Smith,' who derived an analytical approximation of the problem. Other numerical flow 
investigations have been carried out only for uniform inlet flows." - l 6  They used finite difference 
or analytical approximations, transforming the problem into toroidal co-ordinates. In this study a 
Cartesian co-ordinate system is used in order to incorporate straight inflow and outflow tubes in 
the numerical model and to enable a generalization of the method for other 3D geometries. 

A finite element formulation of the Navier-Stokes equations (see e.g. Cuvelier et al.") is used 
and applied to the entrance flow in a curved tube developing from a parabolic entry velocity 
profile. To validate the numerical method, for one value of the Reynolds number (Re = 300) the 
computational results are compared with the results of laser-Doppler measurements. First, the 
finite element method used will be dealt with. Then, the results of the calculations will be presented 
and compared with the results attained from experiments. Only a global description will be given 
of the experimental method, for which the reader is referred to Bovendeerd et al." Finally, the 
results will be discussed and some concluding remarks will be made. 
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2. NUMERICAL METHOD 
Gooerning equations 

The Navier-Stokes equations for steady incompressible flow are given by the momentum 
equations together with the continuity equation. For a bounded domain 12€R3 with boundary r 
they read 

Here p denotes the density, u the velocity, Q the Cauchy stress tensor and f the body force. For 
Newtonian fluids the Cauchy stress tensor can be written as 

(4) p(u.V)u = pf + v-a, v-u  = 0. 

a =  -p1+2t7v,u, (5 )  
with p the pressure, I the unity tensor, 
defined as the symmetrical part of Vu. 

the dynamic viscosity and V,u the rate of strain tensor 

The following boundary conditions are considered: 

u=g  at rl (g#O:inflow condition, g=O:no-slip condition), 

(am) = 0 at r2 (stress-free outflow condition), 

at r, (symmetry condition), 
(o.n)-tl =O 

(wn) =O 
with rlur2ur3=r, I'icrj*i=@ ( i = l ,  2, 3), n the outer normal on r and tj ( j = 1 , 2 )  the 
orthonormal tangential vectors on r. 
Variational formulation 

H' (12) = { v )  u E L2(12), ao/axi E L2(12), i = 1, 2, 3) the following spaces are introduced: 
With the aid of the Hilbert space L2(12)= {uIfn u2 dR< a} and the first-order Sobolev space 

V={vloi~H1(Q), vIrl=O, (v.n)l,,=O, i =  I, 2,3), 

Q = f 4 14 E L2 (Q). (7) 

ForuEH:(R) (H:(12)={vlui~H' (12),VIr,=g,v.n(r,=0))andpEL2(12) andforagivenfEL2(12), 
an equivalent variational formulation of equations (4) can be derived as: Find a pair (u, p )  E Hi (0) 
x L2 (12) such that 

[p(u*V)u]*v dQ= (VT).V d12 VVEV, 

Applying Green's formula and substituting equation (5) and boundary conditions (6) yields the 
weak form: find a pair (u, p) E Hi (In) x L2 (12) such that 
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Galerkin jinite element approximation 

Qh c Q and two finite-dimensional spaces vh c H i  (R) and (2“ c L2 (R) are defined such that 
In order to discretize the variational problem (9), two finite-dimensional spaces v“ c V and 

with 

The variational problem (9) can then be approximated by: find ~ ~ € 9 ~  and p ” ~ @  such that 

~~(V,U”.V).V~ dR+ [~(U”V)U”]T” dR- p”(I.V).v” dR= pf.vh dR VV” E Vh, I s. I I 
(Vwh)qh dR = 0 V q h E Q h .  (12) 

The existence and uniqueness of a solution of (12) can only be proved for spaces Vh and Qh 
satisfying the so-called Brezzi-Babuska condition,’ 8 3  l9 which states that one cannot mix 
arbitrary spaces for the velocity and pressure approximation.209 2’ Moreover, the uniqueness of a 
solution of the Navier-Stokes equations can only be proved for viscosities which are ‘sufficiently’ 
large and body forces which are ‘sufficiently’ 

Let q5in be a basis of space vh and t,bm be a basis of space a” ( i= l ,  2, 3, n = l ,  . . . , N and 
m= 1, . . . , M), then u” and ph are defined by 

Substitution of (13) into the variational problem (12) yields the following system of non-linear 
equations: 

(14) SU + N(u)u + LT p = f, LU = Q, 

with 
sll s12 s13 

s31 s 3 2  $33 
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Penalty function approach 

Direct solution of the set of equations (14) is time- and memory-consuming owing to the fact 
that zero components appear on the principal diagonal of the coefficient matrix. These zero 
coefficients are due to the absence of the pressure in the continuity equation and in general require 
a partial pivoting procedure which disturbs the band structure of the matrix. To overcome this 
difficulty, the penalty function method is applied by solving, instead of (14), 

[S+N(u,) +(1 /~)  LT M i  L]u, =f, pL =(!/&)Mi Lu,, (16) 
with 

P 

M,(k,l)= J/kJ/,dQ k = l , .  . . , M; 1 = 1 , .  . . , M. 
Jn 

Since the penalty formulation as stated here is obtained from the discrete set of equations (14), the 
orthogonal projection matrix M, ensures that the space Qh is a proper subspace of Q, and no 
reduced integration rules are needed to obtain a unique solution of the pressures. 

Caray and K r i ~ h n a n ~ ~  showed that for the steady Navier-Stokes equations the solution of (16) 
converges to the solution of (14) with the following error bound: 

(18) I1 U,h--Uh IlHl(*) + It Pch-Ph IILqn) < CE, 

with C independent of E.  These results are confirmed by the numerical experiments of R e d d ~ . ~ ~  
The main advantage of the penalty function method over the direct solution of equations (14) is 
that the pressure is eliminated from the momentum equations, resulting in a smaller set of 
equations which can be solved without the demand of pivoting procedures. 

The 27-noded hexahedral (Q2 - P1)  element 

A survey of finite elements for the three-dimensional Navier-Stokes equations is given by 
Forth2 '  and Fortin and 26 The Brezzi-Babuska condition and the applicability of a 
penalization formulation (i.e. a discontinuous pressure approximation) are of importance for the 
choice of an element. The simplest element, which is at least second-order accurate and which 
satisfies the above mentioned conditions, is the full quadratic velocity-linear pressure (a$") - P 1 ) 
element (see Figure 2). Similar to the ( P l  -PI )  element,27 which has been proved to be successful 
for the two-dimensional Navier-Stokes equations,28 the pressure is approximated by its value and 
its derivatives in the centroid of the element and thereby is discontinuous over the element 
boundary. The number of unknowns per element is 81 for the velocity and four for the pressure. In 
the literature only limited experience with three-dimensional elements is reported. With respect to 
the (Q2 - P I )  element the following note can be made:". 26 since the pressure imposes only four 
constraints on the 81 degrees of freedom in velocity, the divergence-free condition can perhaps not 
be applied strongly enough and may lead to too compressible an element. Nevertheless, an U(h3)  
accuracy in the velocity approximation was found for a simple test example.29 In the next section 
the (Q2 - P1) element will be applied to the flow in a 90" curved tube and the results will be 
compared with data obtained from laser-Doppler experiments 

3. RESULTS 

The entrance flow in a curved tube with curvature ratio 6 =  1/6 was calculated for Re= 100, 300 
and 500 ( ~ ~ 4 1 ,  122 and 204). To this end, a finite element mesh was generated as depicted in 
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Figure 2. The 27-noded hexahedral (Q2-P,) etement 

\- Y / 2a\ 

Figure 3. Geometry and finite element mesh as used in .the calculations (220 elements, 2205 nodes) 

Figure 3. Upstream of the entrance (B=O) and downstream of the exit (0= n/2) of the 90" bend, an 
inlet and an outlet section with a length of twice the tube diameter were used. A parabolic axial 
velocity distribution and zero secondary velocities were imposed as inflow condition, whereas 
natural (zero normal traction and zero normal strain) outflow conditions were used. 

Experiments were performed in a Perspex model with an internal radius of 4mm and a 
curvature radius of 24 mm (6 = 1/6). The outer surfaces of the model were chosen in such a way 
that the three velocity components were measured with the optical axis of the laser-Doppler 
anemometer employed perpendicular to the outer surface." A long inlet section of 0.4 m ensured a 
fully developed parabolic flow at the entrance of the bend. Also, downstream of the bend a long 
straight glass pipe was present. The Reynolds number of the flow was kept at Re = 300 (IC = 122). 
The velocity components were measured at five cross-sections in the bend ( O = O  (?r/8) 4 2 )  
corresponding with the element boundaries in the finite element mesh (see Figure 3). 

Axial velocities 

In Figure 4 the development of the axial velocity in the plane of symmetry is given for Re = 100, 
300 and 500. In addition, the measured values of the axial velocity at Re=300 are given and 
indicated by circles. At the first two velocity profiles (0 = O  and 8 = n/16) hardly any influence of the 
curvature is visible, although a slight shift towards the inner bend is observable at 8 = 0. Further 
downstream, the maximum of the axial velocity profile is shifted towards the outer bend. At higher 
Reynolds numbers this shift is more pronounced and a plateau in the profiles develops near the 
inner bend. Only at Re = 100 does the flow seem to be fully developed at O = 4 2 .  Despite an overall 
overestimation of the axial velocity (probably due to a measurement inaccuracy of the imposed 
flow value), the calculations agree well with the experiments at all cross-sections. 
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Re=100, ~ = 4 1  
numerical 

I 

0 

Re=300, K=122 
numerical (-) 
experimental (0 )  

I 

0 

Re-500, ~ = 2 0 4  
numerical 

I 
0 n/4 n / 2  

Figure 4. Axial velocity in the plane of symmetry of the curved tube (6 = 1/6) as calculated for Re = 100,300 and 500 ( K  =41, 
122 and 204) and measured (0) for Re=300  ( K =  122). 0, I denote outer and inner bend respectively 

In Figure 5 a more complete picture of the axial flow development is given. Here the axial 
velocity distribution is given by isovelocity contours at several cross-sections in the tube. An 
almost parabolic axial velocity distribution is observed at 8 = 0. This paraboloid, however, is 
shifted slightly towards the inner bend. The experimental isovelocity contours of the axial velocity 
component at this axial position show a shift from the ‘upper’ wall, probably due to the inaccuracy 
in the determination of the wall position. At 8=n/8 the isovelocity contours shift towards the 
outer bend of the tube and no significant deviation is found for the various Reynolds numbers. 
Halfway round the bend (0 = n/4) the shift towards the outer bend has continued and large wall 
shear rates occur at the outer bend of the tube. At higher-Reynolds-number flow a ‘C-shaped‘ 
isovelocity contour is found for the high-velocity region. At the cross-sections 8 = 3n/8 and 0 = n/2 
the ‘C-shaped’ contours further develop and for Re = 100, at first sight, an almost fully developed 
axial velocity distribution is found. The agreement between the experiments and the calculations 
at Re = 300 is fair. 

Secondary velocities 

In Figure 6 the development of the secondary velocity field is given for Re = 100,300 and 500. 
These velocities are normalized with respect to the mean axial velocity W. At the entrance (8 = 0) 
the upstream influence of the bend is visible in a unidirectional secondary flow from the outer bend 
towards the inner bend, which amounts to be about 5% of the mean axial flow. The same 
upstream influence of the bend was found in the experiments. At 8 = n/8 a vortex has developed 
which near the plane of symmetry is directed from the inner bend towards the outer bend, and at 
the upper wall from the outer bend back to the inner bend. The centre of this vortex is 
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approximately located at (x/u = 0, y/a = 065). Hardly any influence of the Reynolds number on the 
shape of the vortex is observable at this axial location. However, the normalized secondary 
velocity components are larger at the higher Reynolds numbers. Although direct comparison with 
the experiments is difficult because of the different locations at which the velocities are determined, 
good agreement is found at this axial station. At 0 = n/4 the layer with circumferential flow along 
the upper wall has intensified, especially at the higher-Reynolds-number flows. Near the plane of 
symmetry the secondary velocities are found to be slightly lower than at O= 4 8 .  For Re = 500 a 
shift of the vortex centre towards the inner bend is found. Also at this axial station the experiments 
agree well with the calculations, although in the experimental case the centre of the vortex is 
observed to be located somewhat closer to the upper wall. Next, at 0 = 3n/8 the influence of the 
Reynolds number on the secondary flow field is clearly visible. For the low-Reynolds-number case 
(Re= 100) the vortex found has approximately the same shape and strength as those found at the 
two axial locations upstream. For Re = 300 and Re = 500, however, the secondary velocities are 
significantly lower, especially near the plane of symmetry. The centre of the vortex has moved 
further in the inner bend direction while, in addition, a deformation of the shape of the vortex has 
taken place. A similar behaviour is found in the experiments. At 0 = n/2 the same characteristics 
are found but also an extra outer-bend-directed fluid motion is observed, superimposed on the 
vortex flow. The same phenomenon is found experimentally. 

More quantitative but less detailed information on the secondary flow field can be obtained 
from the circulation r or the mean axial vorticity 5,  

c, = T/A = u.ds/A, (19) b 
with S a path along the plane of symmetry and the upper tube wall, surrounding a surface 
A (=za2/2). Following Olson and Snyder’s procedure,’ this quantity is best used in the 
dimensionless form 

In Figure 7 this dimensionless mean axial vorticity 5; is plotted as a function of O/h. Owing to the 
overall flow to the inner bend at 6=0, the curves start at negative values. Then a large increase is 
found, coinciding with the development of the secondary vortex. For the higher Reynolds 
numbers this increase is larger but also reaches its maximum at smaller angles 0. Thereafter, the 
circulation decreases again to a value which is smaller for larger Reynolds numbers. The upstream 
effect of the straight outflow tube is expressed as a sudden increase of the circulation. Although the 
axial and secondary velocity distributions suggest that the flow at Re= 100 seems to be fully 
developed at O=n/4, the mean axial vorticity curve in Figure 7 does not reach an asymptotic 
value. The mean axial vorticity at Re = 300 as calculated from the experimental data agrees fairly 
well with the numerically obtained one. 

4. DISCUSSION 

In the preceding section the results of calculations of the entrance flow in a curved tube have been 
presented by means of the axial and secondary velocity distributions. The results of the 
calculations for Re = 300 agree well with the experimental results. Combining the information 
described separately in the preceding section, the following remarks are made. At 0=0  the 
secondary flow is directed towards the inner bend and also the maximum of the axial velocity is 
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1 , Smith (1976) ,  (8 /6<1)  

c c  

0.02 

0.01 

0 

A Bovendeerd (Re=700, 
0 experiments (Re=300, 

Olson and Snyder 

Figure 7. The dimensionless mean axial vorticity in the curved tube (6 = 1/6) as a function of @/6 as calculated for Re = 100, 
300 and 500 ( ~ = 4 1 ,  122 and 204) and measured for Re=300 ( K =  122), together with the results of Smith," Olson and 

Snyderg and Bovendeerd et aLio 

shifted slightly in this direction, both effects pointing to an upstream influence of the bend. The 
same upstream influence is found in the experiments. At 6=7r/8 the flow experiences the 
interaction of convective inertial, viscous and centrifugal forces.30 In the central core of the tube, 
where the axial velocities are large, the centrifugal force dominates, resulting in a secondary flow 
towards the outer bend. Near the walls of the tube the centrifugal forces are less important and a 
circumferential back flow to the inner wall is found. In consequence of this phenomenon, the 
maximum of the axial velocity shifts towards the outer bend. In accordance with the analytical 
approximation for 6/6 < 1 made by Smith," this initial behaviour is nearly independent of the 
Reynolds number. The initial increase of the circulation found here agrees quite well with the 
solution of Smith (see Figure 7). At 6=n/4 the influence of the secondary motion as described 
above is clearly visible in the axial velocity distribution. The maximum of the axial velocity is 
convected further to the outer bend. At higher Reynolds numbers, where the convective terms are 
more important, 'C-shaped' isovelocity contours of the axial velocity component are found in 
accordance with the observations of, for instance, Agrawal et aL6 and Olson and Snyder.' At the 
next axial station (6 = 3@) the dependence on the Reynolds number becomes even clearer. For 
Re= 100 the velocity distribution does not differ much from the one found at the preceding 
axial location and an almost fully developed flow is found. For the higher Reynolds numbers 
(Re = 300,500) the 'C-shaped' axial velocity profiles have become more pronounced. Furthermore, 
the secondary h i d  motion is mainly restricted to a small boundary layer along the upper wall of 
the bend. Similar Reynolds number dependence is reported by Soh and Berger.I6 At 8= 4 2  the 
velocity distribution is strongly influenced by the upstream influence of the straight outflow region 
of the model. Here the secondary velocity distribution is characterized by an increase of the 
velocity component towards the outer bend; a reversed effect from that found at the entrance 
region of the bend. As seen in Figure 7, this increase does not agree with the general observations 
(100 < K < 500,4.66 < 1/6 < 8) made by Olson and Snyderg for a 300" bend, and enables the flow to 
become fully developed. Finally, the increase of the Reynolds number leads to an increase of the 
maximum axial vorticity which, furthermore, is reached at smaller axial positions. The exper- 
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iments of Bovendeerd et aI.” and the observations made by Olson and Snyderg confirm this 
observation. 

With respect to the applicability of the numerical model to three-dimensional flow problems, 
the following remarks are made. The agreement between the experimental and numerical results 
indicates that the finite element method applied offers an accurate tool for three-dimensional flow 
simulations. Although a relatively coarse mesh was used and although the number of pressure 
unknowns, and thus of constraints for divergence freedom (4), is small compared with that of the 
velocity, the results seem to be quite accurate. At Re = 500, however, the solution becomes slightly 
‘wiggly’ (see Figure 5), and for higher Reynolds numbers (Re  = 700) the solution procedure failed to 
converge at all, so finer meshes should be applied in that case. For the finite element mesh applied 
here, about 25 h CPU and about 2 days 1 / 0  were needed per Newton iteration (1 1 Newton 
iterations were needed to reach Re=500)  on a minicomputer (APOLLO DSP90). Therefore 
application of this solution procedure for three-dimensional bifurcation models demands more 
sophisticated computer capacity, such as array processing or supercomputers. 
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